Densidade de corrente: condução elétrica e exemplos - Ciência - 2023


science

Contente

Se denomina densidade atual à quantidade de corrente por unidade de área por meio de um condutor. É uma grandeza vetorial, e seu módulo é dado pelo quociente entre a corrente instantânea I que passa pela seção transversal do condutor e sua área S, de modo que:

Dito assim, as unidades no Sistema Internacional para o vetor de densidade de corrente são amperes por metro quadrado: A / m2. Na forma vetorial, a densidade de corrente é:

A densidade e a intensidade da corrente estão relacionadas, embora a primeira seja um vetor e a última não. A corrente não é um vetor apesar de ter magnitude e significado, já que não é necessário ter uma direção preferencial no espaço para estabelecer o conceito.


Porém, o campo elétrico que se estabelece no interior do condutor é um vetor e está relacionado à corrente. Intuitivamente, entende-se que o campo é mais forte quando a corrente também é mais forte, mas a área da seção transversal do condutor também desempenha um papel determinante nesse aspecto.

Modelo de condução elétrica

Em um pedaço de fio condutor neutro como o mostrado na Figura 3, de formato cilíndrico, os portadores de carga se movem aleatoriamente em qualquer direção. Dentro do condutor, de acordo com o tipo de substância com a qual é feito, haverá n carregadores de carga por unidade de volume. Este n não deve ser confundido com o vetor normal perpendicular à superfície condutora.

O modelo de material condutor proposto consiste em uma rede iônica fixa e um gás de elétrons, que são portadores de corrente, embora sejam representados aqui com um sinal +, por ser esta a convenção para corrente.


O que acontece quando o condutor é conectado a uma bateria?

Então, uma diferença de potencial é estabelecida entre as pontas do condutor, graças a uma fonte que é responsável por fazer o trabalho: a bateria.

Graças a essa diferença de potencial, os atuais transportadores aceleram e marcham de maneira mais ordenada do que quando o material era neutro. Desta forma, ele pode ligar a lâmpada do circuito mostrado.

Nesse caso, um campo elétrico foi criado dentro do condutor que acelera os elétrons. Claro, seu caminho não é livre: apesar do fato de os elétrons terem aceleração, ao colidirem com a rede cristalina eles perdem parte de sua energia e se dispersam o tempo todo. O resultado geral é que eles se movem um pouco mais ordenadamente dentro do material, mas seu progresso é certamente muito pequeno.


Ao colidirem com a rede cristalina, eles a colocam para vibrar, resultando no aquecimento do condutor.Este é um efeito facilmente notado: os fios condutores ficam quentes quando são passados ​​por uma corrente elétrica.

Velocidade de rastreamento vd e a densidade atual

Os portadores atuais agora têm um movimento global na mesma direção do campo elétrico. Essa velocidade global que eles têm é chamada velocidade de rastreamento ou velocidade de deriva e é simbolizado como vd.

Ele pode ser calculado a partir de algumas considerações simples: a distância percorrida dentro do condutor por cada partícula, em um intervalo de tempo dt isto é vd . dt. Como disse antes, existe n partículas por unidade de volume, sendo o volume o produto da área da seção transversal A e a distância percorrida:

V = A.vd dt

Se cada partícula tem carga q, qual quantidade de carga dQ passa pela área PARA em um intervalo de tempo dt?:

dQ = q.n. Avd dt

A corrente instantânea é apenas dQ / dt, portanto:

J = q.n.vd

Quando a carga é positiva, vd está na mesma direção que E Y J. Se a carga for negativa, vd  é oposto ao campo E, mas J Y E eles ainda têm o mesmo endereço. Por outro lado, embora a corrente seja a mesma em todo o circuito, a densidade da corrente não permanece necessariamente inalterada. Por exemplo, é menor na bateria, cuja área da seção transversal é maior do que nos fios condutores mais finos.

Condutividade de um material

Pode-se pensar que os portadores de carga que se movem dentro do condutor e colidindo continuamente com a rede cristalina, enfrentam uma força que se opõe ao seu avanço, uma espécie de atrito ou força dissipativa Fd que é proporcional à velocidade média que carregam, ou seja, a velocidade de arrasto:

Fd v

Fd= α. vd

É o modelo Drude-Lorentz, criado no início do século 20 para explicar o movimento dos atuais portadores dentro de um condutor. Não leva em consideração os efeitos quânticos. α é a constante de proporcionalidade, cujo valor é consistente com as características do material.

Se a velocidade de arrasto for constante, a soma das forças atuando em uma portadora atual é zero. A outra força é aquela exercida pelo campo elétrico, cuja magnitude é Fe = q.E:

o que – α. vd = 0

A velocidade de arrastamento pode ser expressa em termos de densidade de corrente, se for convenientemente resolvido:

De onde:

J = nq2E / α

As constantes n, q e α são agrupadas em uma única chamada σ, para que finalmente obtenhamos:

J = σE

Lei de Ohm

A densidade de corrente é diretamente proporcional ao campo elétrico estabelecido dentro do condutor. Este resultado é conhecido como Lei de Ohm em forma microscópica ou lei de Ohm local.

O valor de σ = n.q2 / α é uma constante que depende do material. É sobre ocondutividade elétrica ou apenas condutividade. Seus valores são tabulados para muitos materiais e suas unidades no Sistema Internacional são amperes / volt x metro (A / V.m), embora existam outras unidades, por exemplo S / m (siemens por metro).

Nem todos os materiais estão em conformidade com esta lei. Aqueles que o fazem são conhecidos como materiais ôhmicos.

Em uma substância com alta condutividade é fácil estabelecer um campo elétrico, enquanto em outra com baixa condutividade é mais trabalhoso. Exemplos de materiais com alta condutividade são: grafeno, prata, cobre e ouro.

Exemplos de aplicação

-Resolvido o exemplo 1

Encontre a velocidade de arrastamento dos elétrons livres em um fio de cobre de área transversal de 2 mm2 quando passa por ele uma corrente de 3 A. O cobre tem 1 elétron de condução para cada átomo.

Facto: Número de Avogadro = 6,023 1023 partículas por mole; carga do elétron -1,6 x 10-19 C; densidade de cobre 8960 kg / m3; peso molecular do cobre: ​​63,55 g / mol.

Solução

De J = q.n.vdResolva a magnitude da velocidade de arrasto:

Como as luzes acendem instantaneamente?

Essa velocidade é surpreendentemente pequena, mas você deve se lembrar que os transportadores de carga estão continuamente colidindo e quicando dentro do motorista, então não se espera que eles andem muito rápido. Um elétron pode levar quase uma hora para ir da bateria do carro à lâmpada do farol, por exemplo.

Felizmente, você não precisa esperar tanto para acender as luzes. Um elétron na bateria empurra rapidamente os outros para dentro do condutor e, assim, o campo elétrico é estabelecido muito rapidamente, pois é uma onda eletromagnética. É o distúrbio que se propaga dentro do fio.

Os elétrons são capazes de pular na velocidade da luz de um átomo para o adjacente e a corrente começa a fluir da mesma forma que a água passa por uma mangueira. As gotas no início da mangueira não são as mesmas da saída, mas ainda é água.

Exemplo trabalhado 2

A figura mostra dois fios conectados, feitos do mesmo material. A corrente que entra da esquerda para a porção mais fina é 2 A. Lá a velocidade de arrastamento dos elétrons é 8,2 x 10-4 em. Supondo que o valor da corrente permaneça constante, encontre a velocidade de arrastamento dos elétrons na porção à direita, em m / s.

Solução

Na seção mais fina: J1 = n.q. vd1 = I / A1

E na seção mais espessa: J2 = n.q. vd2 = I / A2

A corrente é a mesma para ambas as seções, bem como n Y o que, portanto:

Referências

  1. Resnick, R. 1992. Physics. Terceira edição ampliada em espanhol. Volume 2. Compañía Editorial Continental S.A. de C.V.
  2. Sears, Zemansky. 2016. Física Universitária com Física Moderna. 14º. Ed. Volume 2. 817-820.
  3. Serway, R., Jewett, J. 2009. Física para Ciência e Engenharia com Física Moderna. 7ª Edição. Volume 2. Cengage Learning. 752-775.
  4. Sevilla University. Departamento de Física Aplicada III. Densidade e intensidade da corrente. Recuperado de: us.es
  5. Walker, J. 2008. Physics. 4ª Ed. Pearson. 725-728.