Propriedades da Igualdade - Ciência - 2023
science
Contente
- Quais são as propriedades da igualdade?
- Propriedade reflexiva
- Propriedade simétrica
- Propriedade transitiva
- Propriedade uniforme
- Propriedade de cancelamento
- Propriedade de substituição
- Propriedade do poder em igualdade
- Propriedade raiz em igualdade
- Referências
As propriedades de igualdade eles se referem à relação entre dois objetos matemáticos, sejam eles números ou variáveis. É denotado pelo símbolo "=", que sempre fica no meio desses dois objetos. Essa expressão é usada para estabelecer que dois objetos matemáticos representam o mesmo objeto; em outras palavras, que dois objetos são a mesma coisa.
Existem casos em que é trivial usar a igualdade. Por exemplo, está claro que 2 = 2. Porém, quando se trata de variáveis, ela não é mais trivial e tem usos específicos. Por exemplo, se tivermos que y = xe por outro lado x = 7, podemos concluir que y = 7 também.
O exemplo acima é baseado em uma das propriedades de igualdade, como você verá em breve. Essas propriedades são essenciais para resolver equações (igualdades que envolvem variáveis), que constituem uma parte muito importante da matemática.
Quais são as propriedades da igualdade?
Propriedade reflexiva
A propriedade reflexiva, no caso de igualdade, afirma que todo número é igual a si mesmo e é expressa como b = b para qualquer número real b.
No caso particular de igualdade, essa propriedade parece óbvia, mas não é em outros tipos de relações entre números. Em outras palavras, nem todo relacionamento de número real atende a essa propriedade. Por exemplo, tal caso da relação “menor que” (<); nenhum número é menor do que ele mesmo.
Propriedade simétrica
A propriedade simétrica para igualdade diz que se a = b, então b = a. Não importa a ordem usada nas variáveis, ela será preservada pela relação de igualdade.
Uma certa analogia desta propriedade com a propriedade comutativa pode ser observada no caso de adição. Por exemplo, devido a esta propriedade, é equivalente a escrever y = 4 ou 4 = y.
Propriedade transitiva
A propriedade transitiva na igualdade afirma que se a = be b = c, então a = c. Por exemplo, 2 + 7 = 9 e 9 = 6 + 3; portanto, pela propriedade transitiva temos que 2 + 7 = 6 + 3.
Uma aplicação simples é a seguinte: suponha que Julian tem 14 anos e que Mario tem a mesma idade de Rosa. Se Rosa tem a mesma idade de Julián, quantos anos Mario tem?
Por trás desse cenário, a propriedade transitiva é usada duas vezes. Matematicamente é interpretado assim: seja “a” a idade de Mário, “b” a idade de Rosa e “c” a idade de Juliano. Sabe-se que b = c e que c = 14.
Pela propriedade transitiva temos que b = 14; ou seja, Rosa tem 14 anos. Como a = be b = 14, usando a propriedade transitiva novamente temos que a = 14; ou seja, a idade de Mario também é de 14 anos.
Propriedade uniforme
A propriedade uniforme é que se ambos os lados de uma igualdade forem adicionados ou multiplicados pelo mesmo valor, a igualdade será preservada. Por exemplo, se 2 = 2, então 2 + 3 = 2 + 3, o que é claro, já que 5 = 5. Esta propriedade é mais útil ao tentar resolver uma equação.
Por exemplo, suponha que você seja solicitado a resolver a equação x-2 = 1. É conveniente lembrar que resolver uma equação consiste em determinar explicitamente a variável (ou variáveis) envolvida, a partir de um número específico ou de uma variável previamente especificada.
Voltando à equação x-2 = 1, o que você precisa fazer é descobrir explicitamente quanto vale x. Para isso, a variável deve ser apagada.
Foi erroneamente ensinado que, neste caso, como o número 2 é negativo, ele passa para o outro lado da igualdade com um sinal positivo. Mas não é correto dizer assim.
Basicamente, o que você está fazendo é aplicando a propriedade uniforme, como veremos a seguir. A ideia é limpar "x"; ou seja, deixe-o sozinho em um lado da equação. Por convenção, geralmente é deixado no lado esquerdo.
Para isso, o número a "eliminar" é -2. A maneira de fazer isso seria somando 2, já que -2 + 2 = 0 e x + 0 = 0. Para fazer isso sem alterar a igualdade, a mesma operação deve ser aplicada ao outro lado.
Isso permite que ele realize a propriedade uniforme: como x-2 = 1, se o número 2 for adicionado em ambos os lados da igualdade, a propriedade uniforme diz que ele não é alterado. Então temos que x-2 + 2 = 1 + 2, o que equivale a dizer que x = 3. Com isso, a equação estaria resolvida.
Da mesma forma, se você quiser resolver a equação (1/5) y-1 = 9, você pode continuar usando a propriedade uniforme da seguinte forma:
De forma mais geral, as seguintes declarações podem ser feitas:
- Se a-b = c-b, então a = c.
- Se x-b = y, então x = y + b.
- Se (1 / a) z = b, então z = a ×
- Se (1 / c) a = (1 / c) b, então a = b.
Propriedade de cancelamento
A propriedade de cancelamento é um caso particular da propriedade uniforme, particularmente considerando o caso de subtração e divisão (que, basicamente, correspondem também a adição e multiplicação). Esta propriedade trata esse caso separadamente.
Por exemplo, se 7 + 2 = 9, então 7 = 9-2. Ou se 2y = 6, então y = 3 (dividindo por dois em ambos os lados).
De forma análoga ao caso anterior, através da propriedade canceling podem ser estabelecidas as seguintes afirmações:
- Se a + b = c + b, então a = c.
- Se x + b = y, então x = y-b.
- Se az = b, então z = b / a.
- Se ca = cb, então a = b.
Propriedade de substituição
Se sabemos o valor de um objeto matemático, a propriedade de substituição afirma que esse valor pode ser substituído em qualquer equação ou expressão. Por exemplo, se b = 5 e a = bx, então substituindo o valor de "b" na segunda igualdade temos que a = 5x.
Outro exemplo é o seguinte: se "m" divide "n" e também "n" divide "m", então m = n deve ser obtido.
De fato, dizer que "m" divide "n" (ou equivalentemente, que "m" é um divisor de "n") significa que a divisão m ÷ n é exata; isto é, dividir "m" por "n" dá um número inteiro, não um decimal. Isso pode ser expresso dizendo que existe um inteiro "k" tal que m = k × n.
Como "n" também divide "m", então existe um inteiro "p" tal que n = p × m. Devido à propriedade de substituição, temos que n = p × k × n, e para que isso aconteça existem duas possibilidades: n = 0, caso em que teríamos a identidade 0 = 0; ou p × k = 1, da qual teria a identidade n = n.
Suponha que "n" seja diferente de zero. Então, necessariamente, p × k = 1; portanto, p = 1 ek = 1. Usando a propriedade de substituição novamente, substituindo k = 1 na igualdade m = k × n (ou equivalentemente, p = 1 em n = p × m), finalmente obtemos aquele m = n, que era o que queríamos demonstrar.
Propriedade do poder em igualdade
Como visto anteriormente, se uma operação como adição, multiplicação, subtração ou divisão for feita em ambos os termos de uma igualdade, ela é preservada, da mesma forma que outras operações que não alteram uma igualdade podem ser aplicadas.
A chave é sempre executá-lo em ambos os lados da igualdade e certificar-se de que a operação pode ser executada. Esse é o caso do empoderamento; isto é, se ambos os lados de uma equação forem elevados à mesma potência, ainda temos uma igualdade.
Por exemplo, uma vez que 3 = 3, então 32=32 (9 = 9). Em geral, dado um número inteiro "n", se x = y, então xn= en.
Propriedade raiz em igualdade
Este é um caso particular de empoderamento e é aplicado quando a potência é um número racional não inteiro, como ½, que representa a raiz quadrada. Esta propriedade afirma que, se a mesma raiz for aplicada a ambos os lados de uma igualdade (sempre que possível), a igualdade será preservada.
Ao contrário do caso anterior, aqui deve-se ter cuidado com a paridade da raiz a ser aplicada, pois é sabido que a raiz par de um número negativo não está bem definida.
No caso em que o radical é par, não há problema. Por exemplo, se x3= -8, mesmo que seja uma igualdade, você não pode aplicar uma raiz quadrada a ambos os lados, por exemplo. Porém, se você puder aplicar uma raiz cúbica (o que é ainda mais conveniente se você quiser saber explicitamente o valor de x), obtendo assim que x = -2.
Referências
- Aylwin, C. U. (2011). Lógica, conjuntos e números. Mérida - Venezuela: Conselho de Publicações, Universidad de Los Andes.
- Jiménez, J., Rofríguez, M., & Estrada, R. (2005). Matemática 1 SEP. Limite.
- Lira, M. L. (1994). Simon e a matemática: texto de matemática para a segunda série: livro do aluno. Andres Bello.
- Preciado, C. T. (2005). Curso de Matemática 3º. Editorial Progreso.
- Segovia, B. R. (2012). Atividades matemáticas e jogos com Miguel e Lucía. Baldomero Rubio Segovia.
- Toral, C., & Preciado, M. (1985). 2º Curso de Matemática. Editorial Progreso.